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Using binomial cosfficients the Clebsch-Gordan and Gaunt coef-
fictents were calculated for extremely large quantum numbers, The
main advantage of this approach is directly calculating these coeffi-
cients, instead of using recursion relations. Accuracy of the results
is quite high for quantum numbers / and L up to 100. Despite direct
calculation, the CPU times are found comparable with those given
in the related literature. ® 1995 Academic Press, Inc.

I. INTRODUCTION

Clebsch—Gordan and Gaunt coefficients are of considerable
importance in the application of guantum mechanics to the
study of physical and chermical properties of atoms, molecules,
and solids, and to the other fields of physics. Although, there
is not much difficulty in the calculation of these coefficients
for small quantum numbers, various difficulties arise for large
quantum numbers. Dealing with large quantum numbers is
unavoidable in the series expansion formulas for the multicenter
integrals over Slater-type orbitals (§TOs), which are of special
interest to us.

In Refs. [1, 2] recurrence relations are used to avoid factorials
in the calculation of the Clebsch—Gordan and Gaunt coefficients
for large quantum numbers. However, using recurrence rela-
tions makes it impossible to directly get any one of the coeffi-
cients. Therefore, calculation of a required coefficient needs
calculation of many other coefficients as well.

In this work, for direct calculation of the Clebsch—Gordan
and Gaunt coefficients, the analytical expressions derived in
Ref. [3] in terms of binomial coefficients were used with some
modifications. In addition to that we have also computed the
Gaunt coefficients as a product of two Clebsch—Gordan coeffi-
cients,

Our study constitutes a beginning for the calculation of
multicenter molecular integrals on a computer, based on the
method of translation of STOs about a displaced center [4, 5].
In doing so one needs to know the expansion coefficients for the
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normalized associated Legendre functions [6], for the product of
two normalized Legendre functions both with different centers
[71, and for the translation of STOs, as well as Clebsch—Gordan
and Gaunt coefficients. All of these coefficients are expressed
in terms of binomial coefficients [3]. Therefore, binomial coef-
ficients which have very simple recurrence relations can be
used as a basis in the calculations of these coefficients. It is
well known that molecular ab initio calculations require exten-
sive use of computer time and memory. We believe that our
method will have important contributions in reducing require-
ments for computer time and memory.

JI. CLEBSCH-GORDAN COEFFICIENTS

Clebsch—Gordan coefficients ([]lzmlmg{ HLLM) defined by
Eq. (2.9) of Ref. [8] with Condon—-Shertley phases can be
expressed in terms of binomial coefficients as (see Ref. [3])

(![[;gmlmZ l IrlzLM) = 5"”"”1*’"2
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where F,(1) = n\/im!(n — m)!} are binomial coefficients and
b —bLl=L=1 +1h, |M =L, and max[0, |, + m, ~ (L +
MyL-m—-L-M=n=mnl +-L L+ m,
I, — my). Since we use phases according to Ref. [ 7], our defini-
tion of Clebsch—Gordan coefficients has the form in Ref. [9],

Cll = (= D) Pmiml e 880 (1 by | WLLM). - (2)

It is easy o obtain for the Clebsch—Gordan coefficients
Ci% .y the following orthonormality and symmetry relations

{3

343

0021-9991/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.



1
|

344 i

2 (m it YL Ol = 6, S, (3)

iy

E: T AC20m, [, e i [l A 1L iyt
M( 1y gt S g gl Con m{mM )
L,

- 6!"1'"1'_ 8y

Ci%?ﬁg-! = (ﬁ })‘1“2‘14 C%L

mzmlm

= (VRO 5)

= (D VL + DIRL+ 1) Yy

1. GAUNT COEFFICIENTS
Gaunt coefficients C¥(lym,, Lm,) defined in Ref. [10] can be
- expressed in terms of binornial coefficients as in Ref, (3]
Ctlm,, lhymy)

Fg,gl (g - L — LFig)
(2g + DF(2g)

=(— 1)g—u,—m:wlfzxrm1|+|mzl+lm

@+ 102+ DFum (04 b+ MIF QL+ 4+ L4 M) i
X Fyn (4 + L~ MF, WRLYF i 2L + 2M)F ey 2L+ I + 1, + M)

Frulh=my +L— M- OF(h +m + ')Ffi--ul—u(f\ +h- L)F:IMI—L(‘I + 5L+ M)
—_ !
XE( l) Fion th 4 I 4 My !
P i+
(©)
where g = 3L + L+ DM =m —m, |, - bl = L =<

L+ L, |M| = L, and max[0, L. — my, — L] <t < min[, —
[mi|, L — M, L —m; + L]

The Gaunt coefficients can also be expressed as a product
of two Clebsch—Gordan coefficients [11]:

1
Ct(Imy, bmy) = ———
PP B0 o + 1 (7)
VL + DL+ 1) Ci, " Cigt.

The symmetry relations for the Gaunt coefficients are
given as

Ci{lim,, L) = V(2L + 1)/2L + 1) Ct(limy, Len, — my)
= V20, + DIQ2L + 1) Ci{Lm, — ma, L — my)

= CH{lymy, Limy). )
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FIG. 1. Plot of —log(s,‘,z) versus V. Bold points show the situation
whete I} = I, and faint points show other [, I, combinations. Note that
-log(a;il}) is equivalent to number of correct decimal places.

IV. NUMERICAL RESULTS AND DISCUSSION

Since in the calculation of the Clebsch—Gordan and Gaunt
coefficients we use binomial coefficients as a basis it is helpful
to keep them in memory of the computer.

During the calculation of the binomial coefficients, recur-
rence relation

Fim)=F,n— 1)+ F,_(n—1) 9)

is used to refrain from factorials and to speed up the calcula-
tions. Computed binomial coefficients are stored in an array
in the memory and in doing so symumetries of the binomial
coefficients are used to minimize the memory requirement.
Number of the stored binomial coefficients is proportional 1o
ni,/4. As an example for ng,, = 150 it takes approximately
0.5 s of CPU time for computation of all the binomial coeffi-
cients, and 5476 binomial coefficients are stored in the memory
of the computer.

Computer programs are written in FORTRAN 77 on VAX-
4000 system. All parts of programs use REAL*16 precision
arithmetic. To make the given CPU times comparable we would
like to note that one QSQRT evaluation takes approximately
0.4 ms CPU time.

Clebsch—Gordan coefficients were computed from Eqgs. (1)
and (2) and the accuracy of Clebsch~Gordan coefficients was
determined from the orthogonality relations given in Eq. (3).
For a given pair of /,, [, all possible m;, m; values were screened
and the maximum value of the error

(10)
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TABLE 1

Clebsch—-Gordan Coefficients and Their Symmetries for Some Selected Quantum Numbers

Quantum Numbers Clebsch-Gordan coefficients

L £ my £, m and their symmetries

Clebsch-Gordan coefficients

and their symmetries

Quantum Numbers
L £ \ ml £ 2 1112

-0.207128377200859542074494317223818E+00
-0.207128377200859542074494317223818E+00
-0.2071283772008595420744943172238 1 8E+00
-0.2071283772008595420744943172238 | BE+(C

@ 20 -3 15 2)
© 15 22 0 -3)
(1520 3 9 D
@ 20 3 15 -2)

(40 25 12 35 -17) -0,102439678889182401706342466360153E+00
(40 35 -17 25 12) -0.102439678889182401706342466360153E+00
(35 25 12 40 35) -0.102439678889182401706342466360153E+00
(40 25 -12 35 17 -0.102439678889182401706342466360153E+60

(49 40 2 37 1)
(49 37 1 40 -2)
(37 40 2 49 1)
(49 40 2 37 -1

-0.1251348526854796801797494813C0492E+00
-0.1251348526854796801 7974948 [300492E+00
-0.12513485268547968017974948 1300492 E+00
~-0.125134852685479680179749481300492E+00

(7 60 3 58 2
(7 58 2 60 3
(53 60 3 7 -5
(7 60 -3 58 -2)

-0.7764143467519127650182152506524 16E-02
-0.7764143467319127690182152506524 1 6E-02
~0.7764143467519127690182152506524 13E-02
~0.776414346751912769018215250652416E-02

6 80 1 77 -3)
6 77 3 80 1)
(77 80 1 6 2)
(6 80 -1 77 3)

0.724451742673380197719142827641107E-01
0.724451742673380197719142827641107E-01
0.724451742673380197719142827641 108E-01
0.724451742673380197719142827641 107E-0]

-0.363694034426528274645468916157989E+H00
-0.363694034426528274645468916157989E+00
0.363694034426528274645468916137989E+00
-0.3636940344265282746454689161 57989E+00

(3420 3 15 D)
(34 15 2 20 -3)
(15 20 3 34 1)
(34 20 3 15 -2

0.358959301968264328299577247698573E-03
0.358959301968264328299577247698573E-03
0.358959301968264328299577247698573E-03
0.358959301968264328299577247698573E-03

(60 25 12 35 -17)
(60 35 -17 25 12)
(35 25 12 60 5)
(60 25 -12 35 17)

0.338272638561365012251935233086179E+00
0.338272638561365012251935233086179E+G0
0.338272638561365012251935233086179E+00
0.338272638561365012251935233086179E+00

(77 40 2 37 1)
(77 37 1 40 -3
(B7 40 2 77 1)
(77 40 2 37 -1

(116 60 3 58 2)
(116 58 2 60 3)
(53 60 3 116 -5)
(116 60 -3 58 -2)

-0.2241202786178055894750259475508 5 TE+00
-0.22412027861780558947502594 75508 57TE+00
-0.22412027861780558947502594 7550857400
-0.22412027861780558947502594755085TE+00

(78 30 1 77 -3)
(7377 3 80 1)
(77 80 1 78 2
(33 80 -1 77 3)

-0.872053970340664480586873696622292E-01
-0.872053970340664480590059261421848E-01
-0.872053970340664480591715635118T41E-01
-0.872053970340664480590894885896326E-01

was determined. For a given [}, [, pair it was observed that the
maximum error occurs when |m;| = |m,| = 0.

Figure 1 shows a plot of —log, (81!(2) Versus \/El—z It is
clearly seen from the Fig. 1 that the accuracy is closely related
to \/.rlz and maximum error occurs for [, = I,. Although, the
accuracy is higher for /; # L, to be on the safe side [, = [,
should be taken as the reference. All possible I values were
screened for I, = L, and |m,| = |m,| = 0, where the maximum
error oceurs, and the accuracy of the Clebsch—~Gordan coeffi-
cients was also checked by symmetry relations given in Eq.
(5). Maximum error occurred in the midrange of L numbers
and, as expected, they were an order of magnitude better than
those found by orthonormality relations. The Clebsch—Gordan
coetlictents and their symmetries for some selected quantum
numbers are shown in Table 1.

Gaunt coefficients are calculated both from the Eq. (6)
through the binomial coefficients and from Eq. (7) through the
Clebsch—Gordan coefficients. Accuracy of the Gaunt coeffi-
cients calculated from Eq. (7} is determined wsing the symmetry
relations given in Eq. (8). We note that the accuracy of the

Gaunt cocfficients behaves the same as that of the Clebsch—
Gordan coefficients.

Gaunt coefficients calculated from Eq. (6) are checked for
their accuracy by the symmetry relations given in Eq. (8) and
are compared to those obtained from Eq. (7). Accuracy of these
Gaunt coefficients was satisfactory for small quantum numbers
(. L = 40), while it was unacceptable for large quantum
numbers (J;, /» = 60). The Gaunt coefficients and their symmet-
ries calculated from both Eq. {6) and Eq. (7} for some selected
quantum numbers are shown in Table 1.

CPU time required for calculation of only one Clebsch—
Gordan or Gaunt coefficient is related to the number of terms
of the summation in Eq. (1) or Eg. (6). Table 11l shows the
required CPU times for some selected quantum numbers. It
also includes the CPU times for recursive calculations found
in the literature. As the authors do not have much experience
in computer programming, programs were written quite
roughly, We believe that a skilful programmer can considerably
reduce these CPU times.

The expression given in Eq. (1) for Clebsch- Gordan coeffi-
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TABLE II

| GUSEINOV ET AL.

Gaunt Coefficients, Calculated from Both Eq. (6) and Eq. (7), for Some Selected Quantum Numbers

Quantum Numbers Gaunt coefficients Gaunt coefficients . Number of
L {4 m £, my computed from Eq.(7) computed from Eq.(6) Terms
(35 20 -3 15 2) 0.22831996049136240648383191053241488E+00 0.22831996049136240648383191053241483E+)0 |
(31 20 -3 15 2) 093333275484180648727646307949475636E-01 0.93333275484180648727646307949469919E-01 5
(15 20 -3 17 -5 0.71892812332879002898175421943507820E-01 0.71892812332879002898175421943822192E-01 13
(15 20 -3 9 -5 0.11717778700858182295250895784161305E-01 0.11717778700858182295250895784160806E-01 5
(60 25 12 35-17) 0.24163144553313471365499107762123419E+00 0.24163144553313471365499107762123438E+00 1
(48 25 12 35-17) 0.60943321567428860453598105744320768E-01 0.60943321567428860493598105744515016E-01 13
(38 25 12 35-17) -0.22935301595927260757197374746587053E-01 -0.22935301595927260757197374746596042E-01 10
(75 40 -2 37 1) 0.11247579572575226261135887302162431E+00 6.11247579572575226261135887302162449E+00 3
(59 40 -2 37 1) 0.41881419529763815637269171732133892E-01 0.41881419529763815637270175392091160E-01 19
(37 40 -2 21 -3) 0.36291809901020190221116604722642449E-01 0.36291809901020190221116599754775377E-01 19
(37 40 -2 5 -3) 0.13869303747693775517032995926234191E+00 0.13869303747693775517032995926234184E+00 3
(118 60 3 58 2) 0.20340851843561319201456541834314557E+00 (.20340851843561319201456541834314564E+00 1
(58 60 3 58 1) 0.19720171333763386799276264116510151E-01 0.19720171333907882495611564193714732E-01 57
(60 38 1 58 -2) 0.43002575255522843899509184748893122E-01 0.43002575255522844056883846443 163491 E-01 37
60 2 1 38 -2) 0.20107662497245360032548290534793984E+00 0.20107662497245360032548290534793979E+00 1
(15580 1 77 -3) 0.10620517180910204513602583910875749E+00 0.10620517180910204513602583910875386E+00 3
(131 80 1 77 -3) 0.13490722345861117500725469942813815E-01 0.13490722345861117749146452295715484E-01 27
(83 80 1 77 -3) -0.17985243939806236802092417091017870E-0! -0.17980813898253841702895191143202996E-01 75
(5 80 1 77 -3) 0.13523172983645216090536728445612330E+00 0.13523172983645216090536728445612380E+00 2

Also the number of terms of the summation in Eq. (6) are given.

cients is also valid for half-integer quantum numbers and accu-
racy of the results is the same as that illustrated in Fig. 1.
We believe that errors in the calculations stem from the
truncation errors due to the limited accuracy of the computer
and cancellation errors arising from the alternating signs in the

TABLE IT1

Average CPU Times Used for Computing Various Strings of
Clebsch—Gordan and Gaunt Coefficients

CPU time per Gaunt

Quantum numbers CPU time per coefficient
L I m L my C-Gcoefficient Eq. (6) Eq.(7) Ref [2J
L 15 15 15 15 1.9 2 3 2.1
L 15 0 15 0 29 5 63 13
L 8 -5 1w 7 1.8 2.5 5 34
L 14 m 79 m 2.6 38 6 34
L 35 m 3 m 3.5 3.5 8.5 33
L 71 m 7% m 5.7 10.2 12.6 32
L 51 m 99 m 45 8.t 9.4 35

4 CPU times of Ref. [2] are obtained by munping their program on our
computer using REAL * 16 arithmetic.

Note. CPU times given are in milliseconds and averaged over the quantum
numbers which are not specified.

summations {(when two numbers, whose values are very close,
are subtracted from ecach other one loses on a computer as
many digits of accuracy as the number of the same digits of
the two numbers). In addition, the error tends (o increase as
the number of terms in the summation increase.

We believe that presented new approach in this work for the
calculation of the Clebsch—Gordan and Gaunt coefficients is
important for the ab initio calculations of atoms and molecules.
Following studies related to this work will inclade calculation
of multicenter integrals. The ultimate purpose of these studies
is to do molecular ab initio calculations using the above-
mentioned method of expansion for STOs about a displaced
center.
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